Possibility of conversion of neutron star to quark star with strong magnetic field

Monika Sinha
Institute for Theoretical Physics
J. W. Goethe University, Frankfurt
Germany

Collaborator
Ritam Mallick (IISc, Bangalore, India)
Motivations

• Witten explored the possibility of existence of strange quark matter which is stable in bulk.

• The central pressure and density of a NS may be high enough for a phase transition from hadronic matter to deconfined quark matter to occur.

• If a stable strange matter seed is formed inside a NS, the star will be converted to a SS.

• Because of the high energy conditions at which this burning is expected to occur, it may be related to observable phenomena.

• We study the conversion process considering the effect of strong magnetic field on the EoS of highly dense matter which is important for magnetars.

• We consider the appearance of hyperons at the core of a NS, and hence the conversion is simply the deconfinement of hyperons into strange matter.
Our Model

Hadronic phase...

• We employ nonlinear Walecka model for nucleon-hyperon matter

Quark phase...

• Quarks interact among themselves via two-body Richardson potential.

• Quark masses are density dependent, restoring chiral symmetry at high density.

Dey et al., PLB 438, 123 (1998)
Matter in Magnetic Field

- In magnetic field the motion of a charged particle is Landau quantized in the plane perpendicular to the direction of magnetic field.

- We assume the direction of magnetic field as the z-direction of the system.

\[\vec{B} = B \hat{z} \]

- In this choice the kinetic energy of any charged particle is

\[E_n = \sqrt{p_z^2 + m^2 + 2ne|Q|B}. \]

- For charge neutral particle, kinetic energy is

\[E_p = \sqrt{p^2 + m^2} \]

\[\varepsilon_k = \int_0^{p_F} E_p \, d^3 \vec{p} \]

\[\varepsilon = \sum_{B(q)} \varepsilon_{kB(q)} + \varepsilon_p + \sum_l \varepsilon_{kl} \]

\[P = \sum_B \mu_B n_B + \sum_l \mu_l n_l - \varepsilon \]
Basic Picture

- We assume that seeding of strange matter has occurred inside a NS.
- Eventually it grows converting the NSM into SSM.
- The conversion process (combustion) occurs at the interface of NSM and SSM which moves outwards – from center to the surface of the star.
- The combustion front propagates leaving behind quark matter.
- Olinto modeled the conversion process as slow combustion.
- In a nonrelativistic framework, Horvath and Benvenuto showed that slow combustion is unstable and the conversion takes place by detonation from purely hydrodynamic consideration.
- We study the conversion process and examine the modes of propagation in presence of magnetic field in special relativistic framework.
- We consider non-rotating spherically symmetric star.
- The conversion front propagates radially, reducing the geometry of the problem to one dimensional one.
\[\omega_1 v_1^2 \gamma_1^2 + P_1 = \omega_2 v_2^2 \gamma_2^2 + P_2, \]

\[\omega_1 v_1 \gamma_1^2 = \omega_2 v_2 \gamma_2^2, \]

\[n_1 v_1 \gamma_1 = n_2 v_2 \gamma_2. \]

1 → Hadronic sector
2 → Quark sector

\[v_1^2 = \frac{(P_2 - P_1)(\varepsilon_2 + P_1)}{\varepsilon_2 - \varepsilon_1)(\varepsilon_1 + P_2)}, \]

\[v_2^2 = \frac{(P_2 - P_1)(\varepsilon_1 + P_2)}{\varepsilon_2 - \varepsilon_1)(\varepsilon_2 + P_1)}. \]
\[B(n_b/n_0) = B_s + B_c \left\{ 1 - e^{-\beta \left(\frac{n_b}{n_0} \right)^\gamma} \right\} \]

\[B_c = 10^{18} \text{ G} \]

\[B_s = 10^{15} \text{ G} \]
Number density (fm$^{-3}$)

Matter velocities (in natural units)

- v_1, $B=0$
- v_2, $B=0$
- v_1, $B=1 \times 10^{18}$ G
- v_2, $B=1 \times 10^{18}$ G
- v_1, $B=3 \times 10^{18}$ G
- v_2, $B=3 \times 10^{18}$ G

Number density (fm$^{-3}$)

Matter velocities (in natural units)
Propagation of Shock

\[
\frac{1}{\omega} \left(\frac{\partial \varepsilon}{\partial \tau} + v \frac{\partial \varepsilon}{\partial r} \right) + \frac{1}{W^2} \left(\frac{\partial v}{\partial \tau} + v \frac{\partial v}{\partial r} \right) + 2 \frac{v}{r} = 0
\]

and

\[
\frac{1}{\omega} \left(\frac{\partial P}{\partial \tau} + v \frac{\partial P}{\partial r} \right) + \frac{1}{W^2} \left(\frac{\partial v}{\partial \tau} + v \frac{\partial v}{\partial r} \right) = 0,
\]

\[
\frac{dv}{dr} = \frac{2vkW^2(1 + v^2)}{r [4v^2 - k(1 + v^2)^2]}
\]

Tokareva et al., IJMPD 14, 33 (2005)

\[u\] → velocity of front in restframe of hadronic matter

\[W\] → inverse of the Lorentz factor

\[k\] → square of the sound speed in the matter
Conclusions

- With the EoSs employed we find that the mode of propagation of combustion front depends on the central density of the initial star.

- We find that range of density for which the formation of shock is possible increases in presence of magnetic field.

- However, the velocity of shock propagation decreases in presence of magnetic field.

- We have considered both the phases to be at zero temperature. The possibility however, exists that part of the internal energy can be converted to heat energy, thereby increasing the temperature.

- In the present work, we use the special relativistic formalism, though a general relativistic formalism is necessary to get the true picture.

- We have not considered the effect of magnetic field on hydrodynamic picture which is necessary to take into account.